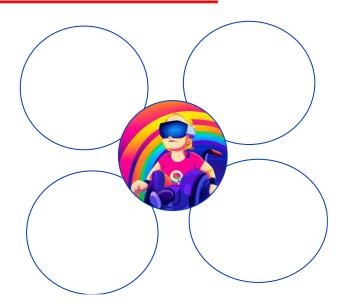


Extended reality technologies for behavioral therapy and cognitive training for people with intellectual disability

Marta Goyena, Matteo Dal Magro, Carlos Cortés, Marta Orduna, Ainhoa Fernández-Alcaide, María Nava-Ruiz, **Jesús Gutiérrez**, Pablo Pérez, Narciso García iesus.gutierrez@upm.es

A Metaverse for the Good Alicante, Spain

Incluverso 5G

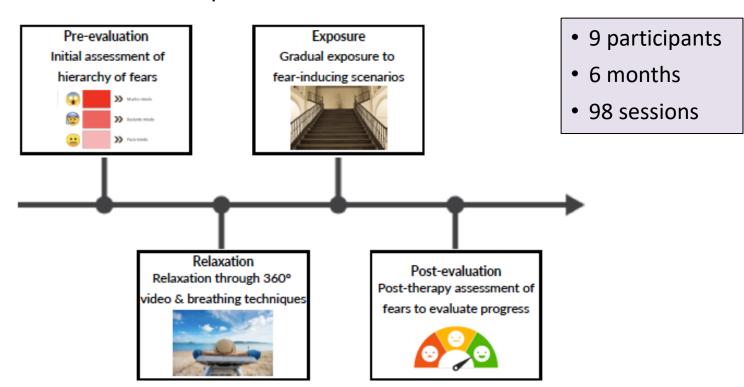

- **Goal:** Designing, developing, and validating XR technologies for the inclusion of people in situations of psychosocial vulnerability
 - Immersive experiences that improve the quality of life of people with intellectual disabilities

- Remote support for autonomy
- Behavioural Therapy for mobility
- Cognitive Training for job integration

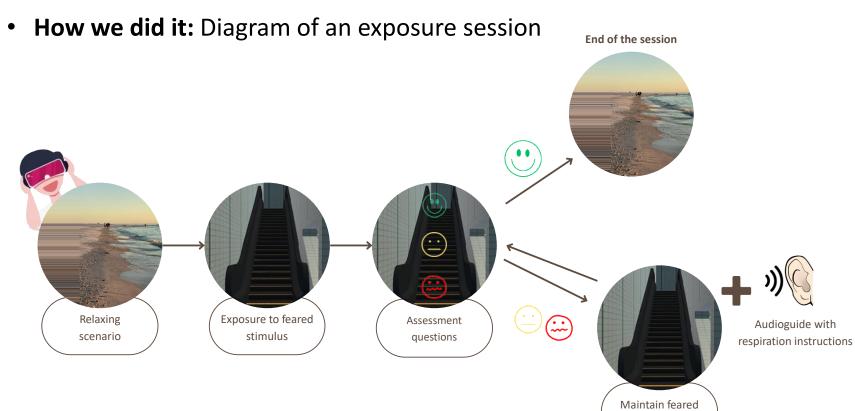
- XR can be effective in therapy → Try to solve a real problem...
- Co-design with professionals of the Fundación Juan XXIII:
 - One of the most common and limiting fears among users is bathmofobia (going up and down stairs)
 - This fear limits the mobility and independence of these individuals
 - Affects their quality of life, reducing their ability to participate in daily activities
 - Systematic desensitization is the classic technique to treat phobias
 - This technique often requires to imagine relaxing and anxious stimuli
 - People with ID have difficulties with imagination → XR can help to overcome those limitations!

Our proposal: To apply the classic technique of systematic desensitization combined with XR and the use of biosensors

- Other benefits (apart from realism)
 - Safe and controlled environment.
 - User monitoring
 - Gradual and personalized exposure
 - Interaction and active learning



• How we did it: Overall procedure



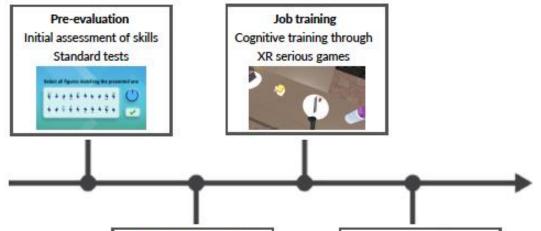
stimulus

What we achieved:

- All participants were able to face the feared stimulus in real life
- Both they and their families reported being very **satisfied** with the experience
 - This process not only improved their quality of life but also facilitated their **inclusion** in the community
- The use of the HMD proved to be a motivating element for the participants.
- This study highlights the potential of XR technologies, proposing a non-invasive, adaptable, and accessible approach for people with ID

- XR can also help in cognitive training
- Co-design with professionals of the Fundación Juan XXIII:
 - Occupational center socio-labor insertion area
 - Train attention and inhibition skills to ease job integration
 - Currently done with 2D games in a tablet
 - Problems to generalize to workplace environments
 - XR serious games on workplace scenarios:
 - Enhancing overall performance and efficiency in the workplace

- Our proposal: To apply XR and biosensors to train attention and inhibition skills directly applicable in the workplace
 - XR scenes simulating real labour scenarios and requiring motor activity
 - Hypothesis: Improvement in training skills and easy application to real work scenarios



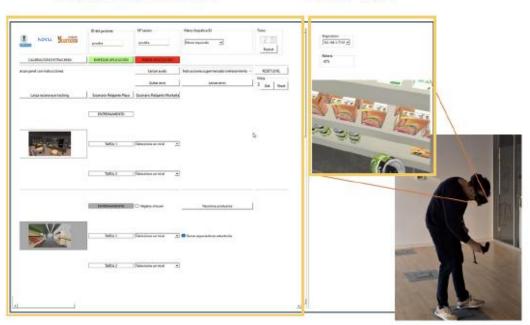
How we are doing it:

- 8 participants
- 8 months
- 2 scenarios:
 - Cafeteria and supermarket
 - 2 tasks and 6 levels

Post-evaluation Post-training assessment of cognitive skills' progress

- **How we are doing it**: Biosensors
 - Signals that provide information about the emotional and **cognitive** state of the users
 - Provide useful details about the user to the therapist
 - Provide information about the progress of the training
 - Able the development of semi-automatic training
 - Non-invasive biosensors
 - Collected physiological data:
 - Heart rate
 - Electro-dermal activity
 - Electromyography
 - Eye-tracking

Tool for therapy and training



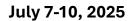
• Two applications: user (HMD) and therapist (monitor)

Control area: Visualization area:

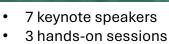
Control the session

HMD view

International Summer School on eXtended Reality Technology and experience



Nokia XR Lab Madrid, Spain


summer school@gti.ssr.upm.es

Posters and demos sessions

Social events

Extended reality technologies for behavioral therapy and cognitive training for people with intellectual disability

Marta Goyena, Matteo Dal Magro, Carlos Cortés, Marta Orduna, Ainhoa Fernández-Alcaide, María Nava-Ruiz, Jesús Gutiérrez, Pablo Pérez, Narciso García

jesus.gutierrez@upm.es

This work has been partially supported by the project TSI-064200-2022-009 (INCLUVERSO 5G) funded by program UNICO I+D 6G 2022 of the Spanish Government within the framework of the Recovery, Transformation and Resilience Plan, and by the projects PID2020-115132RB (SARAOS) and PID2023-148922OA-I00 (EEVOCATIONS) funded by MCIN/AEI/10.13039/501100011033 of the Spanish

